
T1574.002 - DLL Side-Loading
Anthony R. Byrne
Summary

DLL Side-loading is when an adversary uses a malicious DLL to trick the OS into loading and

executing a payload by pretending to be a legitimate DLL used by trusted applications. With limited

testing, we have been able to identify 6 pre-installed Microsoft application that are vulnerable to this

attack. An attacker may wish to hijack an application with this technique to evade defence

mechanisms by concealing their activity under a legitimate application.

Background3 6 7 8 11

"A system can contain multiple versions of the same DLL. Applications can control the location from

which DLLs are loaded by specifying a full path or by other mechanisms such as a manifest. If these

methods are not used, the system searches for the DLL at load time." 3

DLLs can contain multiple functions. There is an optional main function called DLLMain which a DLL

implements if it wants to do any startup activity when it’s first loaded. DLLs can also export functions

that can be called by any other program at runtime.11

According to the Windows documentation, the API calls that can load libraries are LoadLibrary and

LoadLibraryEx:

Figure 1 LoadLibraryA Microsoft Docs

Figure 2 LoadLibraryEx Microsoft Docs

The LoadLibrary Windows API call returns a handle which can be used by GetProcAddress to retrieve

the address of an exported function in a specified DLL so that it can be called.

The vulnerability

@dmcxblue, the creator of the Red Team Notes 2.0 explained the issue succinctly:

“Applications that improperly or vaguely specify the path of a required DLL may be open to a

vulnerability in which an unintended DLL is loaded. Side -loading vulnerabilities specifically occur

when WinSxS manifests are not explicit enough about characteristics of the DLL to be loaded. An

adversary may take advantage of a legitimate program that is vulnerable by replacing the legitimate

one with a malicious one.” 4

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw

Scope

The scope of our testing was limited to the DLLMain entry point of DLLs loaded by applications in the

C:\Windows\System32 directory.

Steps to exploit

1. Identify a victim application6

When we gain an initial foothold on the victim's machine, we can search the process lists to identify

potential targets for our attack. We will be targeting DISM because it is an official Windows utility for

disk image management that comes pre-installed.

To identify the potential vulnerability, we can perform basic static analysis to find where DLLs are

imported and the entry point through decomplication or by using APIMonitor. X-Force Red has a Frida

script freely available on their GitHub called Windows Feature Hunter (WFH)8 that automated this

process of identifying DLLs that are loaded with the LoadLibrary API and the DLL entry point.

First, we copy the potential victim executable into the WFH directory. Then we run WFH against the

program, signalling to it that we want to identify a potential entry point for side-loading. Here are

results when running WFH against DISM.

Figure 3 identifying potential vulnerability

As seen in Figure 3, WFH tells us that DISM loads dismcore.dll via the DLLMain entry point we

mentioned earlier. Now that we have identified this, we can try write a DLL to see if we can trick

dism.exe into loading and executing code within the DLLMain.

Other%20tested%20executables

2. Creating our own malicious version of the legitimate DLL

The Microsoft Windows documentation gives us an example of how to implement the DLLMain

function of a DLL file. We can implement this but add a message pop up to demonstrate that the code

is being run when dism loads it into memory:

Figure 4 Basic DLLMain implementation to demonstrate exploit

NOTE: Our version of dismcore.dll must be compiled as a 64-bit binary

Figure 6 Confirming results

3. Using our malicious DLL to exploit the side-loading vulnerability that exists in the
DISM utility

Now that we have created our malicious version of the dismcore DLL file, we can exploit dism.exe.

Firstly, we copy dism.exe from its legitimate location to a location controlled by us that also contains

our malicious DLL. We do this because the real directory contains the legitimate DLL file, and this

vulnerability relies on the WinSxS misconfiguration. Also, the System32 folder is write protected so we

cannot write our malicious DLL here.

Next, we run the DISM program. The DISM program executes as normal and tries to find the

dismcore.dll library. It finds our version first in its search order and loads it into memory. Once our DLL

is loaded into memory, the DLLMain function is executed and our payload by

extension. This process is shown below.

Figure 5 Successful exploitation

Firing up process explorer, we can confirm we were successful. We can see they are running

under the same PID and that DISM has loaded our version of the DLL based on the path of

dismcore.dll.

Figure 7 DLLMain injecting cobalt strike beacon into memory

Other tested executables

We tested 55 random executables from the C:\Windows\System32 folder. The executables we tested

can be found in Appendix A. Of the 55 executables we tested, 6 were found to be vulnerable to this

attack (Dism.exe, certreq.exe, SearchIndexer.exe, SearchProtocolHost.exe,

SpeechModelDownload.exe, SpeechRuntime.exe). All 6 vulnerable application and the DLL entry

points are listed in Appendix B.

Weaponization

To demonstrate how this may be used in an attack, I utilized this technique to inject and execute

shellcode for a cobalt strike beacon. I used the same technique to side-load a malicious version of a

DLL but this time I exploited the SpeechRuntime.exe executable. The victim is also running Symantec

Endpoint Protection. All traffic on the machine is also being directed through Palo Alto Network’s

application gateway (proxy) firewall.

As seen below, we used the DLLMain entry point. We hardcoded an encrypted version of the cobalt

strike beacon shellcode into the binary file to evade static analysis techniques by Antivirus/EDR

solutions while idle on-disk. We used a simple XOR operation for this. Once loaded into memory we

decrypt the shellcode, reserve virtual memory for it, and finally copy it into this address space and

execute it.

Figure 8 Cobalt strike phoning home through the proxy firewall

Figure 9 Splunk records showing traffic between allowed out but not in

Initially, the results of our tests were partially successful. The cobalt strike beacon executed as

planned and phoned home. The beacon continued to call home every 50s-2mins indefinitely.

On our command and control (C2) server we received these calls; however, the application gateway

(proxy) firewall was successfully blocking our servers attempts to respond with instructions. We

suspect this is due to our requests being unencrypted HTTP traffic over port 80. When our server tried

to respond it was blocked (shown in figure 9). We still consider this test to be a success because

Semantic Endpoint Protection never alerted on this activity and the beacon stayed active phoning

home periodically.

More testing is needed to verify if redoing the test over an encrypted HTTPS connection will prevent

detection by the proxy firewall and allow two-way communication.

We performed this test a second time, with the proxy firewall protections disabled. This time, without

our responses being blocked, we were able to have complete command and control through our

beacon and C2 server.

Figure 10 Our malicious Windows.Speech.Dictation.dll being loaded instead of legitamate one

Figure 11 Successfully executing shell commands remotely though cobalt strike beacon

When we instructed the beacon to exit, the SpeechRuntime process ends.

Mitigation

According to Microsoft, suggested mitigation techniques are to:

• Enable SafeDllSearchMode. This pushes the stage where the current directory is searched till

later in the search-order. Safe DLL search mode is enabled by default and can be found at the

following registry location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\SafeDllSearch

Mode This registry value should be set to 1.

o This setting was enabled during my testing; however, the vulnerable program’s

misconfigurations still leave it vulnerable.

• Ensure that only signed DLLs are loaded for most systems processes and applications.

• The only certain way to prevent this vulnerability is to write secure code for loading DLL from

specified paths only.

Final notes

As this vulnerability relies on a relative path, you should store all legitimate binaries in a write-

protected/privileged location (i.e., Windows, Program Files, Program Files x86); and configure your

AV/EDR to deny the execution of any binary outside of its standard directory.

While only 6 applications were identified as being vulnerable to DLL side-loading through the DLLMain

entry point, several other executable experienced symptoms that could suggest a vulnerability to DLL

side-loading through an exported function. Testing the exported functions of DLLs was out of scope

for this test.

The cobalt strike beacon was operating over an unencrypted HTTP traffic using a common public C2

profile, so we were surprised to see this executed so successfully with no modifications other than

encryption to evade static analysis. This just demonstrates how a layered defence-in-depth approach

is required and no single solution will provide full coverage for your attack surface.

References & bibliography

1. Szappanos, G., 2020. A new APT uses DLL side-loads to “KilllSomeOne”. [online] Sophos

News. Available at: <https://news.sophos.com/en-us/2020/11/04/a-new-apt-uses-dll-side-

loads-to-killlsomeone/> [Accessed 9 July 2021].

2. The MITRE Corporation. 2021. CAPEC-641: DLL Side-Loading. [online] Available at:

<https://capec.mitre.org/data/definitions/641.html> [Accessed 9 July 2021].

3. Microsoft. 2020. Dynamic-Link Library Search Order. [online] Available at:

<https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order>

[Accessed 9 July 2021].

4. @dmcxblue. 2021. DLL Side-Loading. [online] Available at: <https://dmcxblue.gitbook.io/red-

team-notes-2-0/red-team-techniques/privilege-escalation/untitled-2/dll-side-loading>

[Accessed 9 July 2021].

5. Cyware Labs. 2019. DLL Hijacking attacks: What is it and how to stay protected?. [online]

Available at: <https://cyware.com/news/dll-hijacking-attacks-what-is-it-and-how-to-stay-

protected-5056c0f0> [Accessed 9 July 2021].

6. Spehn, C., 2021. Hunting for Windows “Features” with Frida: DLL Sideloading. [online]

Security Intelligence. Available at: <https://securityintelligence.com/posts/windows-features-dll-

sideloading/> [Accessed 9 July 2021].

7. Microsoft. 2018. LoadLibraryA function (libloaderapi.h). [online] Available at:

<https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya>

[Accessed 9 July 2021].

8. Microsoft. 2018. LoadLibraryExW function (libloaderapi.h). [online] Available at:

<https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-

loadlibraryexw> [Accessed 9 July 2021].

9. X-Force Red. 2021. Windows Feature Hunter (WFH). [online] Available at:

<https://github.com/xforcered/WFH> [Accessed 10 July 2021]

10. Microsoft. 2018. DISM Overview. [online] Available at: <https://docs.microsoft.com/en-

us/windows-hardware/manufacture/desktop/what-is-dism> [Accessed 13 July 2021]

11. Microsoft. 2020. DLLMain entry point. [online] Available at: <https://docs.microsoft.com/en-

us/windows/win32/dlls/dllmain> [Accessed 13 July 2021]

https://news.sophos.com/en-us/2020/11/04/a-new-apt-uses-dll-side-loads-to-killlsomeone/
https://news.sophos.com/en-us/2020/11/04/a-new-apt-uses-dll-side-loads-to-killlsomeone/
https://capec.mitre.org/data/definitions/641.html
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
https://dmcxblue.gitbook.io/red-team-notes-2-0/red-team-techniques/privilege-escalation/untitled-2/dll-side-loading
https://dmcxblue.gitbook.io/red-team-notes-2-0/red-team-techniques/privilege-escalation/untitled-2/dll-side-loading
https://cyware.com/news/dll-hijacking-attacks-what-is-it-and-how-to-stay-protected-5056c0f0
https://cyware.com/news/dll-hijacking-attacks-what-is-it-and-how-to-stay-protected-5056c0f0
https://securityintelligence.com/posts/windows-features-dll-sideloading/
https://securityintelligence.com/posts/windows-features-dll-sideloading/
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya%3e
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw
https://github.com/xforcered/WFH
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain

APPENDIX A – All executables tested

Executable Vulnerable

AtBroker.exe No

autochk.exe No

bdechangepin.exe No

BioIso.exe No

calc.exe No

certreq.exe Yes

cleanmgr.exe No

ClipUp.exe No

conhost.exe No

control.exe No

CustomShellHost.exe No

DeviceEnroller.exe No

Dism.exe Yes

dsregcmd.exe No

FsIso.exe No

hvax64.exe No

hvix64.exe No

LaunchWinApp.exe No

licensingdiag.exe No

MdmDiagnosticsTool.exe No

mspaint.exe No

MusNotification.exe No

MusNotificationUx.exe No

Netplwiz.exe No

ntoskrnl.exe No

ntprint.exe No

nvspinfo.exe No

omadmclient.exe No

PerceptionSimulationService.exe No

plasrv.exe No

printui.exe No

quickassist.exe No

refsutil.exe No

Robocopy.exe No

rpcnetp.exe No

SearchFilterHost.exe No

SearchIndexer.exe Yes

SearchProtocolHost.exe Yes

SecurityHealthHost.exe No

SecurityHealthService.exe No

services.exe No

spaceman.exe No

SpeechModelDownload.exe Yes

SpeechRuntime.exe Yes

SppExtComObj.Exe No

sppsvc.exe No

SystemSettingsAdminFlows.exe No

tcblaunch.exe No

vmcompute.exe No

vmwp.exe No

wermgr.exe No

winload.exe No

winresume.exe No

WMIC.exe No

wpbbin.exe No

APPENDIX B – All successful tests

Executable WinAPI DLL

Dism.exe LoadLibraryExW dismcore.dll

certreq.exe LoadLibraryExW cscapi.dll

certreq.exe LoadLibraryExW WindowsCodecs.dll

SearchIndexer.exe LoadLibraryExW sspicli.dll

SearchProtocolHost.exe LoadLibraryExW Msidle.dll

SpeechModelDownload.exe LoadLibraryExW sspicli.dll

SpeechRuntime.exe LoadLibraryExW Windows.Speech.Dictation.dll

